Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors
نویسندگان
چکیده
We construct the symmetry adapted low energy effective Hamiltonian for the electronic states in the vicinity of the Fermi level in iron based superconductors. We use Luttinger’s method of invariants, expanding about Γ and M points in the Brillouin zone corresponding to two iron unit cell, and then matching the coefficients of the expansion to the 5and 8-band models. We then use the method of invariants to study the effects of the spin-density wave order parameters on the electronic spectrum, with and without spin-orbit coupling included. Among the results of this analysis is the finding that the nodal spin-density wave is unstable once spin-orbit coupling is included. Similar analysis is performed for the A1g spin singlet superconducting state. Without spin-orbit coupling there is one pairing invariant near the Γ point, but two near the M point. This leads to an isotropic spectral gap at the hole Fermi surface near Γ, but anisotropic near M. The relative values of these three parameters determine whether the superconducting state is s++, s+−, or nodal. Inclusion of spin-orbit coupling leads to additional mixing of spin triplet pairing, with one additional pairing parameter near Γ and one near M. This leads to an anisotropic spectral gap near both hole and electron Fermi surfaces, the latter no longer cross, but rather split.
منابع مشابه
اثر برهمکنش اسپین مدار یکنواخت و میدان مغناطیسی یکنواخت بر خواص توپولوژیکی یک نانو سیم یک بعدی کوانتومی
We theoretically demonstrate the interplay of uniform spin-orbit coupling and uniform Zeeman magnetic field on the topological properties of one-dimensional double well nano wire which is known as Su-Schrieffer-Heeger (SSH) model. The system in the absence of Zeeman magnetic field and presence of uniform spin-orbit coupling exhibits topologically trivial/non–trivial insulator depending on the h...
متن کاملKondo-model for quantum-dots with spin-orbit coupling
Cotunneling through a spin-orbit coupled quantum dot Starting from the Anderson model for a quantum dot, with Rashba type spinorbit (SO) interactions, coupled to two metallic electrodes, we derive an effective low-energy Hamiltonian describing the dynamical spin-fluctuations, i.e. the cotunneling processes, which remain in the Coulomb blockade regime. This projection to the low-energy states of...
متن کاملLow-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin
Starting from symmetry considerations and the tight-binding method in combination with first-principles calculation, we systematically derive the low-energy effective Hamiltonian involving spin-orbit coupling (SOC) for silicene. This Hamiltonian is very general because it applies not only to silicene itself but also to the low-buckled counterparts of graphene for the other group-IVA elements Ge...
متن کاملSpin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors
The symmetry of thewavefunction describing the Cooper pairs is one of the most fundamental quantities in a superconductor, but for iron-based superconductors it has proved to be problematic to determine, owing to their complex multi-band nature1–3. Here we use a first-principles many-body method, including the two-particle vertex function, to study the spin dynamics and the superconducting pair...
متن کاملمیدان بلوری و ترازهای انرژی یون +3Ce ترکیب 3CeCl
In this paper, the crystal field parameters (CFPs) have been calculated in the framework of the density functional theory using a novel theoretical approach proposed by Pavel Novák et al. and extracting the WANNIER functions from the Bloch eigenstates for the CeCl3 compound. Then, the calculated CFPs have been used in an effective atomic-like Hamiltonian, including the crystal field, 4f-4f cor...
متن کامل